Fluconazole Stella

Fluconazole Stella Drug Interactions

fluconazole

Manufacturer:

Stellapharm

Distributor:

HK Medical Supplies
/
Health Express
Full Prescribing Info
Drug Interactions
Concomitant use of the following other medicinal products cannot be recommended: Halofantrine: Fluconazole can increase halofantrine plasma concentration due to an inhibitory effect on CYP3A4. Concomitant use of fluconazole and halofantrine has the potential to increase the risk of cardiotoxicity (prolonged QT interval, torsades de pointes) and consequently sudden heart death. This combination should be avoided.
Concomitant use that should be used with caution: Amiodarone: Concomitant administration of fluconazole with amiodarone may increase QT prolongation. Caution must be exercised if the concomitant use of fluconazole and amiodarone is necessary, notably with high-dose fluconazole (800 mg).
Concomitant use of the following other medicinal products lead to precautions and dose adjustments: The effect of other medicinal products on fluconazole: Rifampicin: Concomitant administration of fluconazole and rifampicin resulted in a 25% decrease in the AUC and a 20% shorter half-life of fluconazole. In patients receiving concomitant rifampicin, an increase of the fluconazole dose should be considered.
Hydrochlorothiazide: In a pharmacokinetic interaction study, co-administration of multiple-dose hydrochlorothiazide to healthy volunteers receiving fluconazole increased plasma concentration of fluconazole by 40%. An effect of this magnitude should not necessitate a change in the fluconazole dose regimen in subjects receiving concomitant diuretics.
The effect of fluconazole on other medicinal products: Fluconazole is a moderate inhibitor of cytochrome P450 (CYP) isoenzymes 2C9 and 3A4. Fluconazole is also a strong inhibitor of the isozyme CYP2C19. In addition to the observed/documented interactions mentioned as follows, there is a risk of increased plasma concentration of other compounds metabolised by CYP2C9, CYP2C19 and CYP3A4 co-administered with fluconazole. Therefore, caution should be exercised when using these combinations and the patients should be carefully monitored. The enzyme-inhibiting effect of fluconazole persists 4-5 days after discontinuation of fluconazole treatment due to the long half-life of fluconazole.
Alfentanil: During concomitant treatment with fluconazole (400 mg) and intravenous alfentanil (20 μg/kg) in healthy volunteers, the alfentanil AUC10 increased 2-fold, probably through inhibition of CYP3A4. Dose adjustment of alfentanil may be necessary.
Amitriptyline, nortriptyline: Fluconazole increases the effect of amitriptyline and nortriptyline. 5-nortriptyline and/or S-amitriptyline may be measured at initiation of the combination therapy and after one week. Dose of amitriptyline/nortriptyline should be adjusted, if necessary.
Anticoagulants: In post-marketing experience, as with other azole antifungals, bleeding events (bruising, epistaxis, gastrointestinal bleeding, hematuria, and melena) have been reported, in association with increases in prothrombin time in patients receiving fluconazole concurrently with warfarin. During concomitant treatment with fluconazole and warfarin, the prothrombin time was prolonged up to 2-fold, probably due to an inhibition of the warfarin metabolism through CYP2C9. In patients receiving coumarin-type or indanedione anticoagulants concurrently with fluconazole, the prothrombin time should be carefully monitored. Dose adjustment of the anticoagulant may be necessary.
Benzodiazepines (short acting), i.e. midazolam, triazolam: If concomitant benzodiazepine therapy is necessary in patients being treated with fluconazole, consideration should be given to decreasing the benzodiazepine dose, and the patients should be appropriately monitored.
Carbamazepine: Fluconazole inhibits the metabolism of carbamazepine and an increase in serum carbamazepine of 30% has been observed. There is a risk of developing carbamazepine toxicity. Dose adjustment of carbamazepine may be necessary depending on concentration measurements/effect.
Calcium channel blockers: Certain calcium channel antagonists (nifedipine, isradipine, amlodipine, verapamil and felodipine) are metabolised by CYP3A4. Fluconazole has the potential to increase the systemic exposure of the calcium channel antagonists. Frequent monitoring for adverse events is recommended.
Celecoxib: During concomitant treatment with fluconazole (200 mg daily) and celecoxib (200 mg), the celecoxib Cmax and AUC increased by 68% and 134%, respectively. Half of the celecoxib dose may be necessary when combined with fluconazole.
Cyclophosphamide: Combination therapy with cyclophosphamide and fluconazole results in an increase in serum bilirubin and serum creatinine. The combination may be used while taking increased consideration to the risk of increased serum bilirubin and serum creatinine.
Fentanyl: One fatal case of fentanyl intoxication due to possible fentanyl-fluconazole interaction was reported. Furthermore, it was shown in healthy volunteers that fluconazole delayed the elimination of fentanyl significantly. Elevated fentanyl concentration may lead to respiratory depression. Patients should be monitored closely for the potential risk of respiratory depression. Dosage adjustment of fentanyl may be necessary.
HMG-CoA reductase inhibitors: The risk of myopathy and rhabdomyolysis increases when fluconazole is co-administered with HMG-CoA reductase inhibitors metabolised through CYP3A4, such as atorvastatin and simvastatin, or through CYP2C9, such as fluvastatin.
Ibrutinib: Moderate inhibitors of CYP3A4, such as fluconazole, increase plasma ibrutinib concentrations and may increase risk of toxicity. If the combination cannot be avoided, reduce the dose of ibrutinib to 280 mg once daily (two capsules) for the duration of the inhibitor use and provide close clinical monitoring.
Ivacaftor: Co-administration with ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator, increased ivacaftor exposure by 3-fold and hydroxymethyl-ivacaftor (M1) exposure by 1.9-fold. A reduction of the ivacaftor dose to 150 mg once daily is recommended for patients taking concomitant moderate CYP3A inhibitors, such as fluconazole and erythromycin.
Olaparib: Moderate inhibitors of CYP3A4, such as fluconazole, increase olaparib plasma concentrations; concomitant use is not recommended. If the combination cannot be avoided, limit the dose of olaparib to 200 mg twice daily.
Immunosuppressors (i.e. ciclosporin, everolimus, sirolimus and tacrolimus): Ciclosporin: Fluconazole significantly increases the concentration and AUC of ciclosporin. This combination may be used by reducing the dose of ciclosporin depending on ciclosporin concentration.
Everolimus: Although not studied in vivo or in vitro, fluconazole may increase serum concentrations of everolimus through inhibition of CYP3A4.
Sirolimus: Fluconazole increases plasma concentrations of sirolimus presumably by inhibiting the metabolism of sirolimus via CYP3A4 and P-glycoprotein. This combination may be used with a dose adjustment of sirolimus depending on the effect/concentration measurements.
Tacrolimus: Fluconazole may increase the serum concentrations of orally administered tacrolimus up to 5 times due to inhibition of tacrolimus metabolism through CYP3A4 in the intestines. No significant pharmacokinetic changes have been observed when tacrolimus is given intravenously. Increased tacrolimus levels have been associated with nephrotoxicity. Dose of orally administered tacrolimus should be decreased depending on tacrolimus concentration.
Losartan: Fluconazole inhibits the metabolism of losartan to its active metabolite (E-3174) which is responsible for most of the angiotensin II-receptor antagonism which occurs during treatment with losartan. Patients should have their blood pressure monitored continuously.
Methadone: Fluconazole may enhance the serum concentration of methadone. Dose adjustment of methadone may be necessary.
Non-steroidal anti-inflammatory drugs: The Cmax and AUC of flurbiprofen was increased by 23% and 81%, respectively, when co-administered with fluconazole compared to administration of flurbiprofen alone. Similarly, the Cmax and AUC of the pharmacologically active isomer [S-(+)-ibuprofen] was increased by 15% and 82%, respectively, when fluconazole was co-administered with racemic ibuprofen (400 mg) compared to administration of racemic ibuprofen alone.
Although not specifically studied, fluconazole has the potential to increase the systemic exposure of other NSAIDs that are metabolised by CYP2C9 (e.g. naproxen, lornoxicam, meloxicam, diclofenac). Frequent monitoring for adverse events and toxicity related to NSAIDs is recommended. Adjustment of dose of NSAIDs may be needed.
Phenytoin: With co-administration, serum phenytoin concentration levels should be monitored in order to avoid phenytoin toxicity.
Prednisone: Patients on long-term treatment with fluconazole and prednisone should be carefully monitored for adrenal cortex insufficiency when fluconazole is discontinued.
Rifabutin: Fluconazole increases serum concentrations of rifabutin, leading to increase in the AUC of rifabutin up to 80%. There have been reports of uveitis in patients to whom fluconazole and rifabutin were co-administered. In combination therapy, symptoms of rifabutin toxicity should be taken into consideration.
Saquinavir: Fluconazole increases the AUC and Cmax of saquinavir with approximately 50% and 55%, respectively, due to inhibition of saquinavir's hepatic metabolism by CYP3A4 and inhibition of P-glycoprotein. Interaction with saquinavir/ritonavir has not been studied and might be more marked. Dose adjustment of saquinavir may be necessary.
Sulfonylureas: Fluconazole has been shown to prolong the serum half-life of concomitantly administered oral sulfonylureas (e.g., chlorpropamide, glibenclamide, glipizide, tolbutamide) in healthy volunteers. Frequent monitoring of blood glucose and appropriate reduction of sulfonylurea dose is recommended during co-administration.
Theophylline: In a placebo-controlled interaction study, the administration of fluconazole 200 mg for 14 days resulted in an 18% decrease in the mean plasma clearance rate of theophylline. Patients who are receiving high-dose theophylline, or who are otherwise at increased risk for theophylline toxicity, should be observed for signs of theophylline toxicity while receiving fluconazole. Therapy should be modified if signs of toxicity develop.
Tofacitinib: Exposure of tofacitinib is increased when tofacitinib is co-administered with medications that result in both moderate inhibition of CYP3A4 and strong inhibition of CYP2C19 (e.g., fluconazole). Therefore, it is recommended to reduce tofacitinib dose to 5 mg once daily when it is combined with these drugs.
Vinca alkaloids: Although not studied, fluconazole may increase the plasma levels of the vinca alkaloids (e.g. vincristine and vinblastine) and lead to neurotoxicity, which is possibly due to an inhibitory effect on CYP3A4.
Vitamin A: Based on a case-report in one patient receiving combination therapy with all-trans-retinoid acid (an acid form of vitamin A) and fluconazole, CNS-related undesirable effects have developed in the form of pseudotumour cerebri, which disappeared after discontinuation of fluconazole treatment. This combination may be used but the incidence of CNS-related undesirable effects should be borne in mind.
Voriconazole (CYP2C9, CYP2C19 and CYP3A4 inhibitor): Co-administration of oral voriconazole and oral fluconazole to 8 healthy male subjects resulted in an increase in Cmax and AUC of voriconazole by an average of 57% and 79%, respectively. The reduced dose and/or frequency of voriconazole and fluconazole that would eliminate this effect have not been established. Monitoring for voriconazole-associated adverse events is recommended if voriconazole is used sequentially after fluconazole.
Zidovudine: Fluconazole increases Cmax and AUC of zidovudine by 84% and 74%, respectively, due to an approx. 45% decrease in oral zidovudine clearance. The half-life of zidovudine was likewise prolonged by approximately 128% following combination therapy with fluconazole. Patients receiving this combination should be monitored for the development of zidovudine-related adverse reactions. Dose reduction of zidovudine may be considered.
Oral contraceptives: There were no relevant effects on hormone level in the 50 mg fluconazole study, while at 200 mg daily, the AUCs of ethinyl estradiol and levonorgestrel were increased 40% and 24%, respectively. Thus, multiple-dose use of fluconazole at these doses is unlikely to have an effect on the efficacy of the combined oral contraceptive.
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $768 a year.
Already a member? Sign in
Exclusive offer for doctors
Register for a MIMS account and receive free medical publications worth $768 a year.
Already a member? Sign in